
BIOM Documentation
Release 1.0.0

The BIOM Project

December 02, 2013

Contents

i

ii

BIOM Documentation, Release 1.0.0

The BIOM file format (canonically pronounced biome) is designed to be a general-use format for representing biolog-
ical sample by observation contingency tables. BIOM is a recognized standard for the Earth Microbiome Project and
is a Genomics Standards Consortium candidate project.

The BIOM format is designed for general use in broad areas of comparative -omics. For example, in marker-gene
surveys, the primary use of this format is to represent OTU tables: the observations in this case are OTUs and the
matrix contains counts corresponding to the number of times each OTU is observed in each sample. With respect
to metagenome data, this format would be used to represent metagenome tables: the observations in this case might
correspond to SEED subsystems, and the matrix would contain counts corresponding to the number of times each
subsystem is observed in each metagenome. Similarly, with respect to genome data, this format may be used to
represent a set of genomes: the observations in this case again might correspond to SEED subsystems, and the counts
would correspond to the number of times each subsystem is observed in each genome.

There are two components to the BIOM project: first is definition of the BIOM format, and second is development of
support objects in multiple programming languages to support the use of BIOM in diverse bioinformatics applications.
The version of the BIOM file format is independent of the version of the biom-format software.

Contents 1

http://www.biom-format.org
http://www.earthmicrobiome.org
http://gensc.org/
http://www.biom-format.org

BIOM Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Contents

1.1 BIOM Documentation

These pages provide format specifications and API information for the BIOM table objects.

1.1.1 The biom file format

The BIOM project consists of two independent tools: the biom-format software package, which contains software
tools for working with BIOM-formatted files and the tables they represent; and the BIOM file format. As of the 1.0.0
software version and the 1.0 file format version, the version of the software and the file format are independent of one
another. Version specific documentation of the file formats can be found on the following pages.

The biom file format: Version 1.0

The biom format is based on JSON to provide the overall structure for the format. JSON is a widely supported format
with native parsers available within many programming languages.

Required top-level fields:

id : <string or null> a field that can be used to id a table (or null)
format : <string> The name and version of the current biom format
format_url : <url> A string with a static URL providing format details
type : <string> Table type (a controlled vocabulary)

Acceptable values:
"OTU table"
"Pathway table"
"Function table"
"Ortholog table"
"Gene table"
"Metabolite table"
"Taxon table"

generated_by : <string> Package and revision that built the table
date : <datetime> Date the table was built (ISO 8601 format)
rows : <list of objects> An ORDERED list of obj describing the rows

(explained in detail below)
columns : <list of objects> An ORDERED list of obj describing the columns

(explained in detail below)

3

http://www.json.org

BIOM Documentation, Release 1.0.0

matrix_type : <string> Type of matrix data representation (a controlled vocabulary)
Acceptable values:
"sparse" : only non-zero values are specified
"dense" : every element must be specified

matrix_element_type : Value type in matrix (a controlled vocabulary)
Acceptable values:
"int" : integer
"float" : floating point
"unicode" : unicode string

shape : <list of ints>, the number of rows and number of columns in data
data : <list of lists>, counts of observations by sample

if matrix_type is "sparse", [[row, column, value],
[row, column, value],
...]

if matrix_type is "dense", [[value, value, value, ...],
[value, value, value, ...],
...]

Optional top-level fields:

comment : <string> A free text field containing any information that you
feel is relevant (or just feel like sharing)

The rows value is an ORDERED list of objects where each object corresponds to a single row in the matrix. Each
object can currently store arbitrary keys, although this might become restricted based on table type. Each object must
provide, at the minimum:

id : <string> an arbitrary UNIQUE identifier
metadata : <an object or null> A object containing key, value metadata pairs

The columns value is an ORDERED list of objects where each object corresponds to a single column in the matrix.
Each object can currently store arbitrary keys, although this might become restricted based on table type. Each object
must provide, at the minimum:

id : <string> an arbitrary UNIQUE identifier
metadata : <an object or null> A object containing key, value metadata pairs

Example biom files

Below are examples of minimal and rich biom files in both sparse and dense formats. To decide which of these you
should generate for new data types, see the section on Tips and FAQs regarding the BIOM file format.

Minimal sparse OTU table
{

"id":null,
"format": "Biological Observation Matrix 0.9.1-dev",
"format_url": "http://biom-format.org/documentation/format_versions/biom-1.0.html",
"type": "OTU table",
"generated_by": "QIIME revision 1.4.0-dev",
"date": "2011-12-19T19:00:00",
"rows":[

{"id":"GG_OTU_1", "metadata":null},
{"id":"GG_OTU_2", "metadata":null},
{"id":"GG_OTU_3", "metadata":null},
{"id":"GG_OTU_4", "metadata":null},
{"id":"GG_OTU_5", "metadata":null}

4 Chapter 1. Contents

BIOM Documentation, Release 1.0.0

],
"columns": [

{"id":"Sample1", "metadata":null},
{"id":"Sample2", "metadata":null},
{"id":"Sample3", "metadata":null},
{"id":"Sample4", "metadata":null},
{"id":"Sample5", "metadata":null},
{"id":"Sample6", "metadata":null}

],
"matrix_type": "sparse",
"matrix_element_type": "int",
"shape": [5, 6],
"data":[[0,2,1],

[1,0,5],
[1,1,1],
[1,3,2],
[1,4,3],
[1,5,1],
[2,2,1],
[2,3,4],
[2,4,2],
[3,0,2],
[3,1,1],
[3,2,1],
[3,5,1],
[4,1,1],
[4,2,1]

]
}

Minimal dense OTU table
{

"id":null,
"format": "Biological Observation Matrix 0.9.1-dev",
"format_url": "http://biom-format.org/documentation/format_versions/biom-1.0.html",
"type": "OTU table",
"generated_by": "QIIME revision 1.4.0-dev",
"date": "2011-12-19T19:00:00",
"rows":[

{"id":"GG_OTU_1", "metadata":null},
{"id":"GG_OTU_2", "metadata":null},
{"id":"GG_OTU_3", "metadata":null},
{"id":"GG_OTU_4", "metadata":null},
{"id":"GG_OTU_5", "metadata":null}

],
"columns": [

{"id":"Sample1", "metadata":null},
{"id":"Sample2", "metadata":null},
{"id":"Sample3", "metadata":null},
{"id":"Sample4", "metadata":null},
{"id":"Sample5", "metadata":null},
{"id":"Sample6", "metadata":null}

],
"matrix_type": "dense",
"matrix_element_type": "int",
"shape": [5,6],
"data": [[0,0,1,0,0,0],

1.1. BIOM Documentation 5

BIOM Documentation, Release 1.0.0

[5,1,0,2,3,1],
[0,0,1,4,2,0],
[2,1,1,0,0,1],
[0,1,1,0,0,0]]

}

Rich sparse OTU table
{
"id":null,
"format": "Biological Observation Matrix 0.9.1-dev",
"format_url": "http://biom-format.org/documentation/format_versions/biom-1.0.html",
"type": "OTU table",
"generated_by": "QIIME revision 1.4.0-dev",
"date": "2011-12-19T19:00:00",
"rows":[

{"id":"GG_OTU_1", "metadata":{"taxonomy":["k__Bacteria", "p__Proteobacteria", "c__Gammaproteobacteria", "o__Enterobacteriales", "f__Enterobacteriaceae", "g__Escherichia", "s__"]}},
{"id":"GG_OTU_2", "metadata":{"taxonomy":["k__Bacteria", "p__Cyanobacteria", "c__Nostocophycideae", "o__Nostocales", "f__Nostocaceae", "g__Dolichospermum", "s__"]}},
{"id":"GG_OTU_3", "metadata":{"taxonomy":["k__Archaea", "p__Euryarchaeota", "c__Methanomicrobia", "o__Methanosarcinales", "f__Methanosarcinaceae", "g__Methanosarcina", "s__"]}},
{"id":"GG_OTU_4", "metadata":{"taxonomy":["k__Bacteria", "p__Firmicutes", "c__Clostridia", "o__Halanaerobiales", "f__Halanaerobiaceae", "g__Halanaerobium", "s__Halanaerobiumsaccharolyticum"]}},
{"id":"GG_OTU_5", "metadata":{"taxonomy":["k__Bacteria", "p__Proteobacteria", "c__Gammaproteobacteria", "o__Enterobacteriales", "f__Enterobacteriaceae", "g__Escherichia", "s__"]}}
],

"columns":[
{"id":"Sample1", "metadata":{

"BarcodeSequence":"CGCTTATCGAGA",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"gut",
"Description":"human gut"}},

{"id":"Sample2", "metadata":{
"BarcodeSequence":"CATACCAGTAGC",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"gut",
"Description":"human gut"}},

{"id":"Sample3", "metadata":{
"BarcodeSequence":"CTCTCTACCTGT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"gut",
"Description":"human gut"}},

{"id":"Sample4", "metadata":{
"BarcodeSequence":"CTCTCGGCCTGT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"skin",
"Description":"human skin"}},

{"id":"Sample5", "metadata":{
"BarcodeSequence":"CTCTCTACCAAT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"skin",
"Description":"human skin"}},

{"id":"Sample6", "metadata":{
"BarcodeSequence":"CTAACTACCAAT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"skin",
"Description":"human skin"}}

],
"matrix_type": "sparse",
"matrix_element_type": "int",
"shape": [5, 6],
"data":[[0,2,1],

6 Chapter 1. Contents

BIOM Documentation, Release 1.0.0

[1,0,5],
[1,1,1],
[1,3,2],
[1,4,3],
[1,5,1],
[2,2,1],
[2,3,4],
[2,5,2],
[3,0,2],
[3,1,1],
[3,2,1],
[3,5,1],
[4,1,1],
[4,2,1]
]

}

Rich dense OTU table
{
"id":null,
"format": "Biological Observation Matrix 0.9.1-dev",
"format_url": "http://biom-format.org/documentation/format_versions/biom-1.0.html",
"type": "OTU table",
"generated_by": "QIIME revision 1.4.0-dev",
"date": "2011-12-19T19:00:00",
"rows":[

{"id":"GG_OTU_1", "metadata":{"taxonomy":["k__Bacteria", "p__Proteobacteria", "c__Gammaproteobacteria", "o__Enterobacteriales", "f__Enterobacteriaceae", "g__Escherichia", "s__"]}},
{"id":"GG_OTU_2", "metadata":{"taxonomy":["k__Bacteria", "p__Cyanobacteria", "c__Nostocophycideae", "o__Nostocales", "f__Nostocaceae", "g__Dolichospermum", "s__"]}},
{"id":"GG_OTU_3", "metadata":{"taxonomy":["k__Archaea", "p__Euryarchaeota", "c__Methanomicrobia", "o__Methanosarcinales", "f__Methanosarcinaceae", "g__Methanosarcina", "s__"]}},
{"id":"GG_OTU_4", "metadata":{"taxonomy":["k__Bacteria", "p__Firmicutes", "c__Clostridia", "o__Halanaerobiales", "f__Halanaerobiaceae", "g__Halanaerobium", "s__Halanaerobiumsaccharolyticum"]}},
{"id":"GG_OTU_5", "metadata":{"taxonomy":["k__Bacteria", "p__Proteobacteria", "c__Gammaproteobacteria", "o__Enterobacteriales", "f__Enterobacteriaceae", "g__Escherichia", "s__"]}}
],

"columns":[
{"id":"Sample1", "metadata":{

"BarcodeSequence":"CGCTTATCGAGA",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"gut",
"Description":"human gut"}},

{"id":"Sample2", "metadata":{
"BarcodeSequence":"CATACCAGTAGC",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"gut",
"Description":"human gut"}},

{"id":"Sample3", "metadata":{
"BarcodeSequence":"CTCTCTACCTGT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"gut",
"Description":"human gut"}},

{"id":"Sample4", "metadata":{
"BarcodeSequence":"CTCTCGGCCTGT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"skin",
"Description":"human skin"}},

{"id":"Sample5", "metadata":{
"BarcodeSequence":"CTCTCTACCAAT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"skin",

1.1. BIOM Documentation 7

BIOM Documentation, Release 1.0.0

"Description":"human skin"}},
{"id":"Sample6", "metadata":{

"BarcodeSequence":"CTAACTACCAAT",
"LinkerPrimerSequence":"CATGCTGCCTCCCGTAGGAGT",
"BODY_SITE":"skin",
"Description":"human skin"}}

],
"matrix_type": "dense",
"matrix_element_type": "int",
"shape": [5,6],
"data": [[0,0,1,0,0,0],

[5,1,0,2,3,1],
[0,0,1,4,2,0],
[2,1,1,0,0,1],
[0,1,1,0,0,0]]

}

Release versions contain three integers in the following format: major-version.incremental-version.minor-version.
When -dev is appended to the end of a version string that indicates a development (or between-release version). For
example, 1.0.0-dev would refer to the development version following the 1.0.0 release.

1.1.2 Tips and FAQs regarding the BIOM file format

Should I generate sparse or dense biom files?

In general, we recommend using the sparse format for your biom files. These will be a lot smaller than the dense
format biom files when your data is sparse (i.e., more than 85% of your counts are zero). This is common for OTU
tables and metagenome tables, and you’ll want to investigate whether it’s true for your data. If you currently format
your data in tab-separated tables where observations are rows and samples are columns, you can format that file to be
convertible to biom format with the convert_biom.py. Here you can create dense and sparse formats, and see
which file size is smaller. See the section on Converting between file formats.

Motivation for the BIOM format

The BIOM format was motivation by several goals. First, to facilitate efficient handling and storage of large, sparse
biological contingency tables; second, to support encapsulation of core study data (contingency table data and sam-
ple/observation metadata) in a single file; and third, to facilitate the use of these tables between tools that support this
format (e.g., passing of data between QIIME, MG-RAST, and VAMPS.).

Efficient handling and storage of very large tables

In QIIME, we began hitting limitations with OTU table objects when working with thousands of samples and hundreds
of thousands of OTUs. In the near future we expect that we’ll be dealing with hundreds of thousands of samples in
single analyses.

The OTU table format up to QIIME 1.4.0 involved a dense matrix: if an OTU was not observed in a given sample, that
would be indicated with a zero. We now primarily represent OTU tables in a sparse format: if an OTU is not observed
in a sample, there is no count for that OTU. The two ways of representing this data are exemplified here.

A dense representation of an OTU table:

OTU ID PC.354 PC.355 PC.356
OTU0 0 0 4
OTU1 6 0 0

8 Chapter 1. Contents

http://www.qiime.org
http://metagenomics.anl.gov
http://vamps.mbl.edu/

BIOM Documentation, Release 1.0.0

OTU2 1 0 7
OTU3 0 0 3

A sparse representation of an OTU table:

PC.354 OTU1 6
PC.354 OTU2 1
PC.356 OTU0 4
PC.356 OTU2 7
PC.356 OTU3 3

OTU table data tends to be sparse (e.g., greater than 90% of counts are zero, and frequently as many as 99% of counts
are zero) in which case the latter format is more convenient to work with as it has a smaller memory footprint. Both
of these representations are supported in the biom-format project via dense and sparse Table types. Generally if less
than 85% of your counts are zero, a dense representation will be more efficient.

Encapsulation of core study data (OTU table data and sample/OTU metadata) in a single file

The JSON-format OTU table allow for storage of arbitrary amounts of sample and OTU metadata in a single file.
Sample metadata corresponds to what is generally found in QIIME mapping files. At this stage inclusion of this
information in the OTU table file is optional, but it may be useful for sharing these files with other QIIME users and
for publishing or archiving results of analyses. OTU metadata (generally a taxonomic assignment for an OTU) is also
optional. In contrast to the previous OTU table format, you can now store more than one OTU metadata value in this
field, so for example you can score taxonomic assignments based on two different taxonomic assignment approaches.

Facilitating the use of tables between tools that support this format

Different tools, such as QIIME, MG-RAST, and VAMPS work with similar data structures that represent different
types of data. An example of this is a metagenome table that could be generated by MG-RAST (where for example,
columns are metagenomes and rows are functional categories). Exporting this data from MG-RAST in a suitable
format will allow for the application of many of the QIIME tools to this data (such as generation of alpha rarefaction
plots or beta diversity ordination plots). This new format is far more general than previous formats, so will support
adoption by groups working with different data types and is already being integrated to support transfer of data between
QIIME, MG-RAST, and VAMPS.

File extension

We recommend that BIOM files use the .biom extension.

1.1.3 biom-format Table objects

The biom-format project provides rich Table objects to support use of the BIOM file format. The objects encapsulate
matrix data (such as OTU counts) and abstract the interaction away from the programmer. This provides the immediate
benefit of the programmer not having to worry about what the underlying data object is, and in turn allows for different
data representations to be supported. Currently, biom-format supports a dense object built off of numpy.array
(NumPy) and a sparse object built off of Python dictionaries.

biom-format table_factory method

Generally, construction of a Table subclass will be through the table_factory method. This method facilitates
any necessary data conversions and supports a wide variety of input data types.

1.1. BIOM Documentation 9

http://www.qiime.org
http://metagenomics.anl.gov
http://vamps.mbl.edu/
http://www.qiime.org
http://metagenomics.anl.gov
http://vamps.mbl.edu/
http://numpy.scipy.org/

BIOM Documentation, Release 1.0.0

Description of available Table objects

There are multiple objects available but some of them are unofficial abstract base classes (does not use the abc
module for historical reasons). In practice, the objects used should be the derived Tables such as SparseOTUTable
or DenseGeneTable.

Abstract base classes

Abstract base classes establish standard interfaces for subclassed types and provide common functionality for derived
types.

Table Table is a container object and an abstract base class that provides a common and required API
for subclassed objects. Through the use of private interfaces, it is possible to create public methods that op-
erate on the underlying datatype without having to implement each method in each subclass. For instance,
Table.iterSamplesData will return a generator that always yields numpy.array vectors for each sample
regardless of how the table data is actually stored. This functionality results from derived classes implementing pri-
vate interfaces, such as Table._conv_to_np.

OTUTable The OTUTable base class provides functionality specific for OTU tables. Currently, it only provides
a static private member variable that describes its BIOM type. This object was stubbed out incase future methods are
developed that do not make sense with the context of, say, an MG-RAST metagenomic abundance table. It is advised
to always use an object that subclasses OTUTable if the analysis is on OTU data.

PathwayTable A table type to represent gene pathways.

FunctionTable A table type to represent gene functions.

OrthologTable A table type to represent gene orthologs.

GeneTable A table type to represent genes.

MetaboliteTable A table type to represent metabolite profiles.

TaxonTable A table type to represent taxonomies.

Container classes

The container classes implement required private member variable interfaces as defined by the Table abstract base
class. Specifically, these objects define the ways in which data is moved into and out of the contained data object.
These are fully functional and usable objects, however they do not implement table type specifc functionality.

SparseTable The subclass SparseTable can be derived for use with table data. This object implemented all
of the required private interfaces specified by the Table base class. The object contains a _data private member
variable that is an instance of biom.table.SparseDict. It is advised to used derived objects of SparseTable if
the data being operated on is sparse.

10 Chapter 1. Contents

BIOM Documentation, Release 1.0.0

DenseTable The DenseTable object fulfills all private member methods stubbed out by the Table base class.
The dense table contains a private member variable that is an instance of numpy.array. The array object is
a matrix that contains all values including zeros. It is advised to use this table only if the number of samples and
observations is reasonble. Unfortunately, it isn’t reasonable to define reasonable in this context. However, if either
the number of observations or the number of samples is > 1000, it would probably be a good idea to rely on a
SparseTable.

Table type objects

The table type objects define variables and methods specific to a table type. These inherit from a Container
Class and a table type base class, and are therefore instantiable. Generally you’ll instantiate tables with
biom.table.table_factory, and one of these will be passed as the constructor argument.

DenseOTUTable

SparseOTUTable

DensePathwayTable

SparsePathwayTable

DenseFunctionTable

SparseFunctionable

DenseOrthologTable

SparseOrthologTable

DenseGeneTable

SparseGeneTable

DenseMetaboliteTable

SparseMetaboliteTable

1.1. BIOM Documentation 11

BIOM Documentation, Release 1.0.0

1.1.4 Converting between file formats

The convert_biom.py script in the biom-format project can be used to convert between biom and tab-delimited table formats. This is useful for several reasons:

• converting biom format tables to tab-delimited tables for easy viewing in programs such as Excel

• converting between sparse and dense biom formats

Note: The tab-delimited tables are commonly referred to as the classic format tables, while BIOM formatted
tables are referred to as biom tables.

General usage examples

Convert a tab-delimited table to sparse biom format. Note that you must specify the type of table here:

convert_biom.py -i table.txt -o table.from_txt.biom --biom_table_type="otu table"

Convert a tab-delimited table to dense biom format:

convert_biom.py -i table.txt -o table.dense.biom --biom_table_type="otu table" --biom_type=dense

Convert biom format to tab-delimited table format:

convert_biom.py -i table.biom -o table.from_biom.txt -b

Convert dense biom format to sparse biom format:

convert_biom.py -i table.dense.biom -o table.sparse.biom --dense_biom_to_sparse_biom

Convert sparse biom format to dense biom format:

convert_biom.py -i table.sparse.biom -o table.dense.biom --sparse_biom_to_dense_biom

Convert biom format to classic format, including the taxonomy observation metadata as the last column of the classic
format table. Because the BIOM format can support an arbitrary number of observation (or sample) metadata entries,
and the classic format can support only a single observation metadata entry, you must specify which of the observation
metadata entries you want to include in the output table:

convert_biom.py -i table.biom -o table.from_biom_w_taxonomy.txt -b --header_key taxonomy

Convert biom format to classic format, including the taxonomy observation metadata as the last column of the classic
format table, but renaming that column as ConsensusLineage. This is useful when using legacy tools that require
a specific name for the observation metadata column.:

convert_biom.py -i table.biom -o table.from_biom_w_consensuslineage.txt -b --header_key taxonomy --output_metadata_id "ConsensusLineage"

Special case usage examples

Converting QIIME 1.4.0 and earlier OTU tables to BIOM format

If you are converting a QIIME 1.4.0 or earlier OTU table to BIOM format, there are a few steps to go through. First,
for convenience, you might want to rename the ConsensusLineage column taxonomy. You can do this with the
following command:

12 Chapter 1. Contents

BIOM Documentation, Release 1.0.0

sed ’s/Consensus Lineage/ConsensusLineage/’ < otu_table.txt | sed ’s/ConsensusLineage/taxonomy/’ > otu_table.taxonomy.txt

Then, you’ll want to perform the conversion including a step to convert the taxonomy string from the classic OTU
table to a taxonomy list, as it’s represented in QIIME 1.4.0-dev and later:

convert_biom.py -i otu_table.taxonomy.txt -o otu_table.from_txt.biom --biom_table_type="otu table" --process_obs_metadata taxonomy

1.1. BIOM Documentation 13

BIOM Documentation, Release 1.0.0

14 Chapter 1. Contents

CHAPTER 2

BIOM version

The latest official version of the biom-format project is 1.0.0 and of the BIOM file format is 1.0. Details on the file
format can be found here.

15

BIOM Documentation, Release 1.0.0

16 Chapter 2. BIOM version

CHAPTER 3

Installing the biom-format project

To install the biom-format project, you can download the release version biom-format-1.0.0, or work with the
development version. Generally we recommend working with the release version as it will be more stable, but if you
want access to the latest features (and can tolerate some instability) you should work with the development version.

The biom-format project has the following dependencies:

• Python 2 (2.6 or later)

• numpy (1.3.0 or later)

• gcc >= 4.1.2 (optional; used for more efficient sparse table representations)

• cython >= 0.14.1 (optional; used for more efficient sparse table representations)

We’ll illustrate the install process in the $HOME/code directory. You can either work in this directory on your
system (creating it, if necessary, by running mkdir $HOME/code) or replace all occurrences of $HOME/code in
the following instructions with your working directory. Change to this directory to start the install process:

cd $HOME/code

To install the release version, download from biom-format-1.0.0, uncompress the file, and change to the resulting
directory:

wget https://github.com/downloads/biom-format/biom-format/biom-format-1.0.0.tgz
tar -xvzf biom-format-1.0.0.tgz
cd $HOME/code/biom-format-1.0.0

Alternatively, to install the development version, pull it from github, and change to the resulting directory:

git clone git://github.com/biom-format/biom-format.git
cd $HOME/code/biom-format

To install (either the development or release version), follow these steps:

sudo python setup.py install

If you do not have sudo access on your system (or don’t want to install the biom-format project in the default
location) you’ll need to install the library code and scripts in specified directories, and then tell your system where to
look for those files. You can do this as follows:

echo "export PATH=$HOME/bin/:$PATH" >> $HOME/.bashrc
echo "export PYTHONPATH=$HOME/lib/:$PYTHONPATH" >> $HOME/.bashrc

17

https://github.com/downloads/biom-format/biom-format/biom-format-1.0.0.tgz
https://github.com/downloads/biom-format/biom-format/biom-format-1.0.0.tgz

BIOM Documentation, Release 1.0.0

mkdir -p $HOME/bin $HOME/lib/
source $HOME/.bashrc
python setup.py install --install-scripts=$HOME/bin/ --install-purelib=$HOME/lib/ --install-lib=$HOME/lib/

You should then have access to the biom-format project. You can test this by running the following command:

python -c "from biom import __version__; print __version__"

You should see the current version of the biom-format project.

Next you can run:

which convert_biom.py

You should get a file path ending with convert_biom.py printed to your screen if it is installed correctly.

18 Chapter 3. Installing the biom-format project

CHAPTER 4

Citing the BIOM project

You can cite the BIOM format as follows:

The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome.
Daniel McDonald, Jose C. Clemente, Justin Kuczynski, Jai Ram Rideout, Jesse Stombaugh, Doug Wendel, Andreas
Wilke, Susan Huse, John Hufnagle, Folker Meyer, Rob Knight, and J. Gregory Caporaso.
GigaScience, June 2012.

19

BIOM Documentation, Release 1.0.0

20 Chapter 4. Citing the BIOM project

CHAPTER 5

Development team

The biom-format project was conceived of and developed by the QIIME, MG-RAST, and VAMPS development groups
to support interoperability of our software packages. If you have questions about the biom-format project you can
contact gregcaporaso@gmail.com.

21

http://www.qiime.org
http://metagenomics.anl.gov
http://vamps.mbl.edu/
mailto:gregcaporaso@gmail.com

